Twisting og Helix, Hemihelix with Single and Multiple Perversion
Katia Bertoldi, a professor of applied mechanics at Harvard University, and her colleagues wanted to see how hemihelices form on their own. So they stretched a strip of silicone rubber, glued it to a second, unstretched strip and let the pair go. The researchers reported April 23 in PLOS ONE that they could get a range of shapes to form by tuning the dimensions of the glued rubber pieces.
Strips that were much thicker than they were wide spiralled gently to form helices. Those with squarer cross sections relaxed themselves with a strong twist, forming hemihelices with one or many regularly spaced changes in direction.
“It’s sort of a competition between bending and twisting,” Bertoldi says. She and her colleagues are now experimenting with rectangular patches of rubber to see how this same stretch-and-release approach can be applied to make other three-dimensional shapes.
Spiral-bound
![](https://www.sciencenews.org/sites/default/files/images/scivis_diagram.png)
Shape matters
The number of changes in direction, or “perversions,” in a hemihelix depends on the cross section of the bonded strips (shown actual size below). Keeping width constant (blue = 3 mm, red = 1.89 mm), researchers decreased the thickness of the strips (shown as height) for more perversions.![](https://www.sciencenews.org/sites/default/files/images/scivis_002_0.png)
Post a Comment