Thursday, July 31, 2014

The first man-made biological leaf could enable humans to colonise space

A Real Artificial Leaf Made By Man

RCA graduate Julian Melchiorri says the synthetic biological leaf he developed, which absorbs water and carbon dioxide to produce oxygen just like a plant, could enable long-distance space travel.

Silk Leaf by Julian Melchiorri

"Plants don't grow in zero gravity," explainsMelchiorri. "NASA is researching different ways to produce oxygen for long-distance space journeys to let us live in space. This material could allow us t0 explore space much further than we can now."

Melchiorri's Silk Leaf project, which he developed as part of the Royal College of Art's Innovation Design Engineering course in collaboration with Tufts University silk lab, consists of chloroplasts suspended in a matrix made out of silk protein.

"The material is extracted directly from the fibres of silk," Melchiorri explains. "This material has an amazing property of stabilising molecules. I extracted chloroplasts from plant cells and placed them inside this silk protein. As an outcome I have the first photosynthetic material that is living and breathing as a leaf does."

Chloroplasts suspended in silk protein
Like the leaves of a plant, all Melchiorri's Silk Leaf needs to produce oxygen is light and a small amount of water.
Silk Leaf lamps by Julian Melchiorri
"Silk Leaf is the first man-made biological leaf," he claims. "It's very light, low energy-consuming, it's completely biological."

Photosynthetic Facade

Visualisation of a photosynthetic facade by Julian Melchiorri
"My idea was to use the efficiency of nature in a man-made environment," he explained. "I created some lighting out of this material, using the light to illuminate the house but at the same time to create oxygen for us."

Photosynthetic Filters For Buildings

Visualisation of photosynthetic filters for buildings by Julian Melchiorri
However, Melchiorri says the material could also be used at a much larger scale.
"It could [also] be used for outdoor applications," he says. "So facades, ventilation systems. You can absorb air from outside, pass it through these biological filters and then bring oxygenated air inside."

About the Author

Prejeesh Sreedharan

Author & Editor

I am a Biotechnologist very much interested in #SciTech (Science And Technology). I closely follow the developments in medical science and life science. I am also very enthusiast in the world of electronics, information technology and robotics. I always looks for ways to make complicated things simpler. And I always believes simplest thing is the most complicated ones.

Post a Comment

Hi-Tech Talk © 2015 - Designed by